Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(6): e27816, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38510028

RESUMO

Here, we present surface analysis and biocompatibility evaluation of novel composite material based on graphene oxide traded as Hastalex. First, the surface morphology and elemental analysis of the pristine material were examined by atomic force and scanning electron microscopies, and by energy-dispersive and X-ray photoelectron spectroscopies, respectively. The Hastalex surface was then modified by plasma (3 and 8 W with exposure times up to 240 s), the impact of which on the material surface wettability and morphology was further evaluated. In addition, the material aging was studied at room and elevated temperatures. Significant changes in surface roughness, morphology, and area were detected at the nanometer scale after plasma exposure. An increase in oxygen content due to the plasma exposure was observed both for 3 and 8 W. The plasma treatment had an outstanding effect on the cytocompatibility of Hastalex foil treated at both input powers of 3 and 8 W. The cell number of human MRC-5 fibroblasts on Hastalex foils exposed to plasma increased significantly compared to pristine Hastalex and even to tissue culture polystyrene. The plasma exposure also affected the fibroblasts' cell growth and shape.

2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474025

RESUMO

We focused on polydimethylsiloxane (PDMS) as a substrate for replication, micropatterning, and construction of biologically active surfaces. The novelty of this study is based on the combination of the argon plasma exposure of a micropatterned PDMS scaffold, where the plasma served as a strong tool for subsequent grafting of collagen coatings and their application as cell growth scaffolds, where the standard was significantly exceeded. As part of the scaffold design, templates with a patterned microstructure of different dimensions (50 × 50, 50 × 20, and 30 × 30 µm2) were created by photolithography followed by pattern replication on a PDMS polymer substrate. Subsequently, the prepared microstructured PDMS replicas were coated with a type I collagen layer. The sample preparation was followed by the characterization of material surface properties using various analytical techniques, including scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and X-ray photoelectron spectroscopy (XPS). To evaluate the biocompatibility of the produced samples, we conducted studies on the interactions between selected polymer replicas and micro- and nanostructures and mammalian cells. Specifically, we utilized mouse myoblasts (C2C12), and our results demonstrate that we achieved excellent cell alignment in conjunction with the development of a cytocompatible surface. Consequently, the outcomes of this research contribute to an enhanced comprehension of surface properties and interactions between structured polymers and mammalian cells. The use of periodic microstructures has the potential to advance the creation of novel materials and scaffolds in tissue engineering. These materials exhibit exceptional biocompatibility and possess the capacity to promote cell adhesion and growth.


Assuntos
Colágeno , Engenharia Tecidual , Camundongos , Animais , Colágeno/química , Adesão Celular , Propriedades de Superfície , Mioblastos , Dimetilpolisiloxanos/química , Mamíferos
3.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474083

RESUMO

Diamond-like carbon (DLC) layers are known for their high corrosion and wear resistance, low friction, and high biocompatibility. However, it is often necessary to dope DLC layers with additional chemical elements to strengthen their adhesion to the substrate. Ti-DLC layers (doped with 0.4, 2.1, 3.7, 6.6, and 12.8 at.% of Ti) were prepared by dual pulsed laser deposition, and pure DLC, glass, and polystyrene (PS) were used as controls. In vitro cell-material interactions were investigated with an emphasis on cell adhesion, proliferation, and osteogenic differentiation. We observed slightly increasing roughness and contact angle and decreasing surface free energy on Ti-DLC layers with increasing Ti content. Three-week biological experiments were performed using adipose tissue-derived stem cells (ADSCs) and bone marrow mesenchymal stem cells (bmMSCs) in vitro. The cell proliferation activity was similar or slightly higher on the Ti-doped materials than on glass and PS. Osteogenic cell differentiation on all materials was proved by collagen and osteocalcin production, ALP activity, and Ca deposition. The bmMSCs exhibited greater initial proliferation potential and an earlier onset of osteogenic differentiation than the ADSCs. The ADSCs showed a slightly higher formation of focal adhesions, higher metabolic activity, and Ca deposition with increasing Ti content.


Assuntos
Artroplastia de Substituição , Células-Tronco Mesenquimais , Titânio/química , Propriedades de Superfície , Carbono/química , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo
4.
Polymers (Basel) ; 16(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38399886

RESUMO

Many bio-applicable materials, medical devices, and prosthetics combine both polymer and metal components to benefit from their complementary properties. This goal is normally achieved by their mechanical bonding or casting only. Here, we report an alternative easy method for the chemical grafting of a polymer on the surfaces of a metal or metal alloys using alkoxy amine salt as a coupling agent. The surface morphology of the created composites was studied by various microscopy methods, and their surface area and porosity were determined by adsorption/desorption nitrogen isotherms. The surface chemical composition was also examined by various spectroscopy techniques and electrokinetic analysis. The distribution of elements on the surface was determined, and the successful bonding of the metal/alloys on one side with the polymer on the other by alkoxy amine was confirmed. The composites show significantly increased hydrophilicity, reliable chemical stability of the bonding, even interaction with solvent for thirty cycles, and up to 95% less bacterial adhesion for the modified samples in comparison with pristine samples, i.e., characteristics that are promising for their application in the biomedical field, such as for implants, prosthetics, etc. All this uses universal, two-step procedures with minimal use of energy and the possibility of production on a mass scale.

5.
Nanomaterials (Basel) ; 13(24)2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132977

RESUMO

In the case of polymer medical devices, the surface design plays a crucial role in the contact with human tissue. The use of AgNPs as antibacterial agents is well known; however, there is still more to be investigated about their anchoring into the polymer surface. This study describes the changes in the surface morphology and behaviour in the biological environment of polyetheretherketone (PEEK) with immobilised AgNPs after different surface modifications. The initial composites were prepared by immobilising silver nanoparticles from a colloid solution in the upper surface layers of polyetheretherketone (PEEK). The prepared samples (Ag/PEEK) had a planar morphology and were further modified with a KrF laser, a GaN laser, and an Ar plasma. The samples were studied using the AFM method to visualise changes in surface morphology and obtain information on the height of the structures and other surface parameters. A comparative analysis of the nanoparticles and polymers was performed using FEG-SEM. The chemical composition of the surface of the samples and optical activity were studied using XPS and UV-Vis spectroscopy. Finally, drop plate antibacterial and cytotoxicity tests were performed to determine the role of Ag nanoparticles after modification and suitability of the surface, which are important for the use of the resulting composite in biomedical applications.

6.
Heliyon ; 9(11): e21566, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027944

RESUMO

The design of functional micro or nanostructured surfaces is undergoing extensive research for their intriguing multifunctional properties and for large variety of potential applications in biomedical field (tissue engineering or cell adhesion), electronics, optics or microfluidics. Such nanosized topographies can be easily fabricated by various lithography techniques and can be also further reinforced by synergic effect by combining aforementioned structures along materials with already outstanding antibacterial properties. In this work we fabricated novel micro/nanostructured substrates using soft lithography replication method and subsequent thermal nanoimprint lithography method, creating nanostructured films based on poly (l-lactic acid) (PLLA) fortified by thin silver films deposited by PVD. Main nanoscale patterns were fabricated by replicating surface patterns of optical discs (CDs and DVDs), which proved to be easy, fast and inexpensive method for creating relatively large area patterned surfaces. Their antimicrobial activity was examined in vitro against the bacteria Escherichia coli and Staphylococcus epidermidis strains. The results demonstrated that nanopatterned films actually improved the conditions for bacterial growth compared to pristine PLLA films, the novelty is based on formation of Ag nanoparticles on the surface/and in bulk, while silver nanoparticle enhanced and nanopatterned films exhibited excellent antibacterial activity against both bacterial strains, with circa 80 % efficacy in 4 h and complete bactericidal effect in span of 24 h.

7.
Micromachines (Basel) ; 14(7)2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37512610

RESUMO

Cyclic olefin copolymer (COC) is a novel type of thermoplastic polymer gaining the attention of the scientific community in electronic, optoelectronic, biomedicine and packaging applications. Despite the benefits in the use of COC such as undoubted optical transparency, chemical stability, a good water-vapor barrier and biocompatibility, its original hydrophobicity restricts its wider applicability and optimization of its performances. Presently, we report on the optical and morphological properties of the films of COC covered with Ti in selected areas. The layer of Ti on COC was deposited by pulsed lased deposition processing. The Ti/COC film was characterized by UV-Vis spectroscopy indicating that its transmittance in the visible region decreased by about 20% with respect to the pristine polymer. The quality of the deposited Ti was assessed with the morphology by scanning electron (SEM) and atomic force microscopies (AFM). The modification of the wettability was observed by the sessile drop method indicating a reduction of the native hydrophilicity.

8.
Materials (Basel) ; 16(12)2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37374464

RESUMO

This study is focused on polytetrafluoroethylene (PTFE) porous nanotextile and its modification with thin, silver sputtered nanolayers, combined with a subsequent modification with an excimer laser. The KrF excimer laser was set to single-shot pulse mode. Subsequently, the physico chemical properties, morphology, surface chemistry, and wettability were determined. Minor effects of the excimer laser on the pristine PTFE substrate were described, but significant changes were observed after the application of the excimer laser to the polytetrafluoroethylene with sputtered silver, where the formation of a silver nanoparticles/PTFE/Ag composite was described, with a wettability similar to that of a superhydrophobic surface. Both scanning electron microscopy and atomic force microscopy revealed the formation of superposed globular structures on the polytetrafluoroethylene lamellar primary structure, which was also confirmed using energy dispersive spectroscopy. The combined changes in the surface morphology, chemistry, and thus wettability induced a significant change in the PTFE's antibacterial properties. Samples coated with silver and further treated with the excimer laser 150 mJ/cm2 inhibited 100% of the bacterial strain E. coli. The motivation of this study was to find a material with flexible and elastic properties and a hydrophobic character, with antibacterial properties that could be enhanced with silver nanoparticles, but hydrophobic properties that would be maintained. These properties can be used in different types of applications, mainly in tissue engineering and the medicinal industry, where water-repellent materials may play important roles. This synergy was achieved via the technique we proposed, and even when the Ag nanostructures were prepared, the high hydrophobicity of the system Ag-polytetrafluorethylene was maintained.

9.
Nanomaterials (Basel) ; 13(3)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36770517

RESUMO

Here, we aimed to achieve exposure of a nanodiamond layer to a high-energy excimer laser. The treatment was realized in high-vacuum conditions. The carbon, in the form of nanodiamonds (NDs), underwent high-temperature changes. The induced changes in carbon form were studied with Raman spectroscopy, X-ray photoelectron spectroscopy, and X-ray diffraction (XRD) and we searched for the Q-carbon phase in the prepared structure. Surface morphology changes were detected by atomic force microscopy (AFM) and scanning electron microscopy (SEM). NDs were exposed to different laser energy values, from 1600 to 3000 mJ cm-2. Using the AFM and SEM methods, we found that the NDs layer was disrupted with increasing beam energy, to create a fibrous structure resembling Q-carbon fibers. Layered micro-/nano-spheres, representing the role of diamonds, were created at the junction of the fibers. A Q-carbon structure (fibers) consisting of 80% sp3 hybridization was prepared by melting and quenching the nanodiamond film. Higher energy values of the laser beam (2000 and 3000 mJ cm-2), in addition to oxygen bonds, also induced carbide bonds characteristic of Q-carbon. Raman spectroscopy confirmed the presence of a diamond (sp3) phase and a low-intensity graphitic (G) peak occurring in the Q-carbon form samples.

10.
Int J Mol Sci ; 24(2)2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36674946

RESUMO

Metal nanostructure-treated polymers are widely recognized as the key material responsible for a specific antibacterial response in medical-based applications. However, the finding of an optimal bactericidal effect in combination with an acceptable level of cytotoxicity, which is typical for metal nanostructures, prevents their expansion from being more significant so far. This study explores the possibility of firmly anchoring silver nanoparticles (AgNPs) into polyetherether ketone (PEEK) with a tailored surface morphology that exhibits laser-induced periodic surface structures (LIPSS). We demonstrated that laser-induced forward transfer technology is a suitable tool, which, under specific conditions, enables uniform decoration of the PEEK surface with AgNPs, regardless of whether the surface is planar or LIPSS structured. The antibacterial test proved that AgNPs-decorated LIPSS represents a more effective bactericidal protection than their planar counterparts, even if they contain a lower concentration of immobilized particles. Nanostructured PEEK with embedded AgNPs may open up new possibilities in the production of templates for replication processes in the construction of functional bactericidal biopolymers or may be directly used in tissue engineering applications.


Assuntos
Nanopartículas Metálicas , Nanopartículas Metálicas/química , Prata/química , Polietilenoglicóis/química , Cetonas/química , Antibacterianos/farmacologia , Antibacterianos/química
11.
Materials (Basel) ; 16(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36676507

RESUMO

In this review, we present a comprehensive summary of the formation of honeycomb microstructures and their applications, which include tissue engineering, antibacterial materials, replication processes or sensors. The history of the honeycomb pattern, the first experiments, which mostly involved the breath figure procedure and the improved phase separation, the most recent approach to honeycomb pattern formation, are described in detail. Subsequent surface modifications of the pattern, which involve physical and chemical modifications and further enhancement of the surface properties, are also introduced. Different aspects influencing the polymer formation, such as the substrate influence, a particular polymer or solvent, which may significantly contribute to pattern formation, and thus influence the target structural properties, are also discussed.

12.
Polymers (Basel) ; 14(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36433071

RESUMO

In this article, we present a unique combination of techniques focusing on the immobilization of noble metal nanoparticles into a honeycomb polystyrene pattern prepared with the improved phase-separation technique. The procedure consists of two main steps: the preparation of the honeycomb pattern (HCP) on a perfluoroethylenepropylene substrate (FEP), followed by an immobilization procedure realized by the honeycomb pattern's exposure to an excimer laser in a noble metal nanoparticle solution. The surface physico-chemical properties, mainly the surface morphology and chemistry, are characterized in detail in the study. The two-step procedure represents the unique architecture of the surface immobilization process, which reveals a wide range of potential applications, mainly in tissue engineering, but also as substrates for analytical use.

13.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234493

RESUMO

Design and properties of a plasmonic modulator in situ tunable by electric field are presented. Our design comprises the creation of periodic surface pattern on the surface of an elastic polymer supported by a piezo-substrate by excimer laser irradiation and subsequent selective coverage by silver by tilted angle vacuum evaporation. The structure creation was confirmed by AFM and FIB-SEM techniques. An external electric field is used for fine control of the polymer pattern amplitude, which tends to decrease with increasing voltage. As a result, surface plasmon-polariton excitation is quenched, leading to the less pronounced structure of plasmon response. This quenching was checked using UV-Vis spectroscopy and SERS measurements, and confirmed by numerical simulation. All methods prove the proposed functionality of the structures enabling the creation smart plasmonic materials for a very broad range of advanced optical applications.

14.
Int J Mol Sci ; 23(20)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36293417

RESUMO

In the present study, graphene oxide foils 10 µm thick have been irradiated in vacuum using same charge state (one charge state) ions, such as protons, helium and oxygen ions, at the same energies (3 MeV) and fluences (from 5 × 1011 ion/cm2 to 5 × 1014 ion/cm2). The structural changes generated by the ion energy deposition and investigated by X-ray diffraction have suggested the generation of new phases, as reduced GO, GO quantum dots and graphitic nanofibers, carbon nanotubes, amorphous carbon and stacked-cup carbon nanofibers. Further analyses, based on Rutherford Backscattering Spectrometry and Elastic Recoil Detection Analysis, have indicated a reduction of GO connected to the atomic number of implanted ions. The morphological changes in the ion irradiated GO foils have been monitored by Transmission Electron, Atomic Force and Scanning Electron microscopies. The present study aims to better structurally, compositionally and morphologically characterize the GO foils irradiated by different ions at the same conditions and at very low ion fluencies to validate the use of GO for radiation detection and propose it as a promising dosimeter. It has been observed that GO quantum dots are produced on the GO foil when it is irradiated by proton, helium and oxygen ions and their number increases with the atomic number of beam gaseous ion.


Assuntos
Nanotubos de Carbono , Prótons , Hélio , Íons , Oxigênio
15.
Int J Mol Sci ; 23(18)2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36142868

RESUMO

Although many noble metals are known for their antibacterial properties against the most common pathogens, such as Escherichia coli and Staphylococcus epidermidis, their effect on healthy cells can be toxic. For this reason, the choice of metals that preserve the antibacterial effect while being biocompatible with health cells is very important. This work aims to validate the effect of gold on the biocompatibility of Au/Ag nanowires, as assessed in our previous study. Polyethylene naphthalate (PEN) was treated with a KrF excimer laser to provide specific laser-induced periodic structures. Then, Au was deposited onto the modified PEN via a vacuum evaporation method. Atomic force microscopy and scanning electron microscopy revealed the dependence of the surface morphology on the incidence angle of the laser beam. A resazurin assay cytotoxicity test confirmed safety against healthy human cells and even cell proliferation was observed after 72 h of incubation. We have obtained satisfactory results, demonstrating that monometallic Au nanowires can be applied in biomedical applications and provide the biocompatibility of bimetallic Au/AgNWs.


Assuntos
Nanofios , Antibacterianos/farmacologia , Escherichia coli , Ouro/química , Ouro/farmacologia , Humanos , Lasers , Nanofios/química , Naftalenos , Polietilenos
16.
Nanomaterials (Basel) ; 12(15)2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35957089

RESUMO

Here, we aimed at the preparation of an antibacterial surface on a flexible polydimethylsiloxane substrate. The polydimethylsiloxane surface was sputtered with silver, deposited with carbon, heat treated and exposed to excimer laser, and the combinations of these steps were studied. Our main aim was to find the combination of techniques applicable both against Gram-positive and Gram-negative bacteria. The surface morphology of the structures was determined by atomic force microscopy and scanning electron microscopy. Changes in surface chemistry were conducted by application of X-ray photoelectron spectroscopy and energy dispersive spectroscopy. The changes in surface wettability were characterized by surface free energy determination. The heat treatment was also applied to selected samples to study the influence of the process on layer stability and formation of PDMS-Ag or PDMS-C-Ag composite layer. Plasmon resonance effect was determined for as-sputtered and heat-treated Ag on polydimethylsiloxane. The heating of such structures may induce formation of a pattern with a surface plasmon resonance effect, which may also significantly affect the antibacterial activity. We have implemented sputtering of the carbon base layer in combination with excimer laser exposure of PDMS/C/Ag to modify its properties. We have confirmed that deposition of primary carbon layer on PDMS, followed by sputtering of silver combined with subsequent heat treatment and activation of such surface with excimer laser, led to the formation of a surface with strong antibacterial properties against two bacterial strains of S. epidermidis and E. coli.

17.
Materials (Basel) ; 15(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806736

RESUMO

The main aim of this study was to describe the treatment of carbon sheet with a high-energy excimer laser. The excimer modification changed the surface chemistry and morphology of carbon. The appearance of specific carbon forms and modifications have been detected due to exposure to laser beam fluencies up to 8 J cm-2. High fluence optics was used for dramatic changes in the carbon layer with the possibility of Q-carbon formation; a specific amorphous carbon phase was detected with Raman spectroscopy. The changes in morphology were determined with atomic force microscopy and confirmed with scanning electron microscopy, where the partial formation of the Q-carbon phase was detected. Energy dispersive spectroscopy (EDS) was applied for a detailed study of surface chemistry. The particular shift of functional groups induced on laser-treated areas was determined by X-ray photoelectron spectroscopy. For the first time, high-dose laser exposure successfully induced a specific amorphous carbon phase.

18.
Int J Mol Sci ; 23(9)2022 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35563068

RESUMO

Here, we report on the nanopatterning of different aromatic polymer substrates achieved by KrF excimer laser treatment. The conditions for the construction of the laser-induced periodic surface structures, the so-called LIPSS pattern, were established by optimized laser fluence and a number of pulses. The polymer substrates were polyethylene naphthalate (PEN), polyethersulfone (PES), and polystyrene (PS), which were chosen since they are thermally, chemically, and mechanically resistant polymers with high absorption coefficients at the excimer laser wavelength. The surface morphology of the treated substrates was investigated by atomic force microscopy and scanning electron microscopy, and the roughness and effective surface area on the modified samples were determined. Elemental concentration was characterized by energy-dispersive (EDX) analysis, surface chemistry was determined with X-ray photoelectron spectroscopy (XPS). The samples with the formation of LIPSS induced by 10 mJ·cm-2 with 1000, 3000, and 6000 pulses were used for subsequent in vitro cytocompatibility tests using human cells from osteosarcoma (U-2 OS). The LIPSS pattern and its ability of significant cell guidance were confirmed for some of the studied samples. Cell morphology, adhesion, and proliferation were evaluated. The results strongly contribute to the development of novel applications using nanopatterned polymers, e.g., in tissue engineering, cell analysis or in combination with metallization for sensor construction.


Assuntos
Nanoestruturas , Animais , Comunicação Celular , Humanos , Lasers , Mamíferos , Nanoestruturas/química , Polímeros/química , Propriedades de Superfície
19.
Nanomaterials (Basel) ; 12(7)2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35407337

RESUMO

As polymeric materials are already used in many industries, the range of their applications is constantly expanding. Therefore, their preparation procedures and the resulting properties require considerable attention. In this work, we designed the surface of polyethylene naphthalate (PEN) introducing copper nanowires. The surface of PEN was transformed into coherent ripple patterns by treatment with a KrF excimer laser. Then, Cu deposition onto nanostructured surfaces by a vacuum evaporation technique was accomplished, giving rise to nanowires. The morphology of the prepared structures was investigated by atomic force microscopy and scanning electron microscopy. Energy dispersive spectroscopy and X-ray photoelectron spectroscopy revealed the distribution of Cu in the nanowires and their gradual oxidation. The optical properties of the Cu nanowires were measured by UV-Vis spectroscopy. The sessile drop method revealed the hydrophobic character of the Cu/PEN surface, which is important for further studies of biological responses. Our study suggests that a combination of laser surface texturing and vacuum evaporation can be an effective and simple method for the preparation of a Cu/polymer nanocomposite with potential exploitation in bioapplications; however, it should be borne in mind that significant post-deposition oxidation of the Cu nanowire occurs, which may open up new strategies for further biological applications.

20.
Polymers (Basel) ; 14(3)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35160591

RESUMO

Collagen, as the main component of connective tissue, is frequently used in various tissue engineering applications. In this study, porous sponge-like collagen scaffolds were prepared by freeze-drying and were then mineralized in a simulated body fluid. The mechanical stability was similar in both types of scaffolds, but the mineralized scaffolds (MCS) contained significantly more calcium, magnesium and phosphorus than the unmineralized scaffolds (UCS). Although the MCS contained a lower percentage (~32.5%) of pores suitable for cell ingrowth (113-357 µm in diameter) than the UCS (~70%), the number of human-osteoblast-like MG-63 cells on days 1, 3 and 7 after seeding was higher on MCS than on UCS, and the cells penetrated deeper into the MCS. The cell growth in extracts prepared by eluting the scaffolds for 7 days in a cell culture medium was also markedly higher in the MCS extracts, as indicated by real-time monitoring in the sensory xCELLigence system for 7 days. From this point of view, MCS are more promising for bone tissue engineering than UCS. However, MCS evoked a more pronounced inflammatory response than UCS, as indicated by the production of tumor necrosis factor-alpha (TNF-α) in macrophage-like RAW 264.7 cells in cultures on these scaffolds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...